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Figure	  1:	  Natural Sensing System. In a cell, the 
signal transmission machinery is usually 
performed by networks of covalent 
modification cycles. The signal processing 
machinery (computation) is performed by 
genetic circuits.  
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Annual accomplishments  
 
Summary of the Project: This project aims at designing sensing 
systems in bacteria E. coli by employing and re-engineering 
components from natural sensing/transduction systems. As shown 
in Figure 1, any such sensing system must have a detector, a 
transmission system, and a computation element, which produces 
a visible output. The transmission system usually involves 
covalent modification cycles such as phosphorylation (the MAPK 
cascades), while the computation element usually involves gene 
expression. The properties that we look for in a sensing system 
are (a) high sensitivity to the presence of molecules to be sensed 
and (b) fast response time so that the visible output is displayed 
with minimal delay with respect to when the environmental 
molecule appeared.  
 
Sensing through phosphorylation: Isolation Amplifier Circuit in E. coli 

The phosphorylation circuit that was assembled in the previous grant to obtain an optimal 
sensing device is depicted in Figure 2 [1]. This year, we tested the system with its several 
variants and assessed is temporal response through a new equipment for single-cell real-time 
measurement.  
 
 
	  

 

Fig 2. Implementation of a semi-synthetic transmission system based on phosphorylation in E. coli. The phosphorylation cycle is 
given by the NRI-NRI* (phosphorylated) cycle depicted in blue.	  	  



	  
	  
	  
	  
	  

Result 1: Making an inverter 

We fixed the amount of NRII Kinase by fixing the aTc 
induction level and then used IPTG as a new input. IPTG 
induction increases the concentration of the NRII 
phosphatase and, as a consequence, should decrease the 
level of NRI* (phosphorylated NRI). The experimental 
results shown in Figure 3 confirm this prediction showing 
a linear inverter characteristics. 
 
 
Result 2: Time-varying induction and automated measurement 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 shows the experimental setup if we have assembled to perform time-varying single cell 
measurements. Specifically, the system is composed of 16 bioreactors (Takahashi et al. (2014)), 

where we have 15 mL per bioreactor at 500 rpm and 30 or 37 ℃. The following customized 
growth conditions: Batch (maximal growth rate); Turbidostat (constant OD);Chemostat (constant 
growth rate); Cytostat (constant cell numbers). Also, we have remote control through the 
wireless network, autosampler with sampling time of 8-10 mins and sampling vol:>25 uL. Figure 
5 shows a sample time trajectory where the experiment run for 3 full days. Since the circuit 

Fig 3. Inverter characteristics of the device.	  	  
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Fig 4. Experimental apparatus for single cell dynamic measurements.	  	  
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responds as expected to the time varying induction, it shows that the circuit plasmid is very 
stable.  

 

 

Result 3: Breaking The Tradeoff with Multiple Stages 

 

 

Figure 6 shows the steady state and temporal performance of the device based on a single stage 
phosphorylation cycle. While the system is able to keep a desired input/output characteristic in 
the face of load, this goes to the expense of a slower temporal response. We were able to 
overcome this limitation by employing a device based on two stages of phosphorylation. 
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Fig 5. Phosphorylation-based sensing system under time-varying induction..	  	  

Fig 6. Phosphorylation-based sensing system and its steady state and temporal performance.	  	  



	  
	  
	  
	  
	  

 

 

Figure 7 shows a device with two stages along with simulation results. Because of the presence 
of the two stages, we were able to use the second stage to attenuate the steady state effect of the 
load and the first stage fast dynamics to compensate any slow-down in the temporal response due 
to a high load that X applied on W*. This design was experimentally tested and validated in 
yeast cells [2]. 

Noise Properties of the Device 

 

 

Figure 8 shows the noise properties of the device based on a single stage. While the coefficient 
of variation (CV) is not affected by the gain of the system, the frequency spectrum is. In 
particular, higher gains tend to decrease the content of the noise of the device at low frequencies 
but increase it at higher frequencies. Since most useful input stimuli occur on the lower 
frequency range, this result says that our device possesses also the ability of attenuating noise in 
addition to attenuating the deleterious effects of the load. 
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Fig 7. A two-stage device can make the steady state of the output be robust to the load while keeping the desired temporal response.	  	  

Fig 8. Stochastic simulations performed using the Stochastic Simulation Algorithm (SSA).	   	  



	  
	  
	  
	  
	  

	   	  Limitations in Biosensing due to Limitations of Resources  

 

 

 

Because the transcriptional and translational resources are limited in genetic circuits, hidden 
interactions arise as multiple genes share these resources. As a consequence a simple activation 
cascade gives rise (see Figure 9) to hidden interactions (shown in red) that lead to a feedforward 
loop. Because of this feedforward loop, the ideal input/output response of the cascade (an 
increasing function) transforms into a biphasic or decreasing one (see Figure 10). 

 

 

 

This result shows that the limited availability of resources can cause the sensor to perform in an 
unexpected and undesirable way. New techniques and research is required to find ways to 
mitigate the problem and to optimize circuits accordingly. 
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Fig 9. Activation cascade made out of three genes.	   	  
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